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A B S T R A C T   

Indoor environmental quality (IEQ) monitoring is an important basis of smart buildings to ensure human comfort 
and control energy systems. IEQ monitoring conventionally relies on a limited number of stationary sensors 
deployed at selected locations, which has little capacity to capture fine spatial characteristics due to the cost of 
infrastructure and maintenance. This paper describes a robot-based mobile sensing system for high-resolution 
temperature monitoring by selecting air temperature as the targeted IEQ parameter. Experiments were con-
ducted in a classroom to test the mobile sensing performance through comparisons with the dense stationary 
sensor network. Furthermore, two spatio-temporal processing methods were developed to reconstruct continuous 
thermal maps from short- and long-term monitoring. The results indicate that the robot velocity of 0.25–0.45 m/s 
is better than 0.60–0.80 m/s and 0.10–0.20 m/s, and that the proposed methods are suitable for generating 
accurate, high-resolution thermal maps.   

1. Introduction 

1.1. Background 

The conventional building industry is challenged by strict demands 
of energy efficiency and the increasing complexity of the built envi-
ronment [1]. Smart buildings with the capability to dynamically 
respond to climate, grids and users have been promoted in the past few 
decades [2,3]. Intelligent monitoring and analytics of various types of 
building performance data are fundamental prerequisites to achieve the 
goals of smart building [4]. Among all monitoring performances, indoor 
environmental quality (IEQ) is among the most important aspects 
because people spend about 90% time indoors, and IEQ directly in-
fluences human satisfaction, health and well-being [5–7]. Real-time IEQ 
monitoring helps to detect poor or unexpected conditions [8,9] and 
provides signals for the control of facilities, such as heating, ventilation 
and air-conditioning (HVAC) systems, to enhance IEQ performance and 
energy efficiency [10–12]. IEQ monitoring has thus become a major 
focus of many building rating systems such as BREEAM [13], LEED [14] 

and WELL [15] as well as measurement guidelines such as AHSRAE/ 
CIBSE/USGBC Performance Measurement Protocols for commercial 
buildings [16]. 

Despite the importance of IEQ monitoring, its applications in real-life 
buildings are often inadequate for fully grasping IEQ information, which 
limits its value and effects on IEQ improvement and energy saving. The 
key challenge is the complex spatio-temporal distribution characteristics 
of IEQ due to the joint influences of outdoor climate, building envelopes, 
space layout, human activity, equipment and other indoor disturbances 
[17–20]. For example, Pollard et al. [17] found that the mean air tem-
perature at different locations in a 1220 m2 space varied by >3 ◦C at 
midday on workdays (spatial distribution), while Lee et al. [20] revealed 
that the temporal variation of CO2 concentration could also have a wide 
range of approximately 400 ppm (parts per million; 1 ppm equals 1 ml/ 
m3) between 9 a.m. and 6 p.m. on the same day (temporal distribution). 

The temporal issue in IEQ monitoring can be solved by current 
technology. Recent developments in the Internet of Things (IoT) and 
Wireless Sensor Networks (WSNs) [21,22] have enabled the emergence 
of a series of integrated, low-cost and intelligent IEQ monitoring systems 
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[23,24]. These systems support simultaneous measurement of various 
IEQ parameters, wireless transmission, cloud storage and remote 
download, meaning that continuous, long-term IEQ data is now avail-
able at high-frequency intervals without much effort. 

The spatial issue still lacks a cost-effective solution, however. To 
better understand spatial distribution characteristics, a common 
approach is to install multiple IEQ sensors at different positions. This 
method is generally defined as stationary sensing. Although stationary 
sensing makes sense in theory, it leads to three problems in practice. 
Firstly, more sensors mean more infrastructure investment costs. The 
affordability constraint often results in fewer sensors in applications 
than suggested to be used by guidelines and standards, which signifi-
cantly reduces the spatial resolution of IEQ monitoring [25]. Secondly, 
due to the stationary sensor positions, each IEQ sensor can only repre-
sent a small space range around its installation location [26]. In other 
words, such stationary sensing method is highly sensitive to the selec-
tion of sensor locations [27]. The actual selection of sensor installation 
positions is often not as intended because of several practical issues, 
such as the requirement of connecting to an external power supply and 
non-invasion to the normal building operations. In large spaces in 
particular, IEQ sensors are usually placed on the perimeter of the 
floorplan [17], far away from where people actually congregate. 
Without a sufficient number of sensors and a representative sampling 
strategy, the IEQ data obtained by stationary sensing in these cases can 
only represent a limited area rather than the overall IEQ conditions 
throughout the building [22,23]. 

Thirdly, stationary sensing can only collect IEQ data ‘passively’ and 
lacks the agility necessary to ‘actively’ adapt to the changing environ-
ment. For example, personnel locations are likely to dynamically change 
in a building [28]. If we want to know the real-time IEQ conditions 
around people, then the stationary sensing method may fail when 
personnel locations are far from the preset static sensor locations. 

Due to the above predicaments of stationary sensing, a new sensing 
paradigm is required to improve the spatial resolution and flexibility of 

IEQ monitoring: mobile sensing. 

1.2. Literature review of mobile sensing 

Mobile sensing can be used both outdoors and indoors. For outdoor 
contexts, researchers usually utilise humans (i.e. by using smartphones, 
smartwatches, wearable sensors and the like) or vehicles as mobile 
sensing platforms to collect various spatio-temporal data at the urban or 
neighbourhood scale. Chaix [29] discussed the potential of combining 
wearable sensors with the Global Positioning System (GPS), which can 
provide a mobile sensing perspective for understanding the full dy-
namics of environmental exposure in public health research. Nemati 
et al. [30] reviewed the applications of mobile sensing with smartphones 
for environmental, transportation and health monitoring. Similar 
research was also conducted by Aram et al. [31] and Bujari et al. [32], 
who developed mobile sensing platforms based on smartphones or 
smartwatches to pervasively collect environmental data. Apte et al. 
[33], Anjomshoaa et al. [34], Leung et al. [35] and Guo et al. [36] 
deployed environmental sensors on urban vehicles that routinely navi-
gate through city streets to establish a dynamic network for compre-
hensive and efficient urban environmental monitoring. Zhou et al. [37], 
Chen et al. [38] and Guo et al. [39] exploited mobile sensing for the 
early warning or localisation of gas emissions in a city. These studies 
cover the shortcomings of traditional ground-based monitoring stations 
and can lead to further research on the spatio-temporal problems of big 
data. 

For indoor contexts, the mobile sensing idea can retrospect to the use 
of mobile instrument carts for IEQ monitoring [40]. Traditional IEQ 
monitoring required a large number of sensors, so researchers developed 
an instrument cart with multiple sensors to conduct measurements 
simultaneously at various locations [41–43]. Although this IEQ cart can 
realize mobile sensing to some extent, it generally relies on considerable 
labor costs and manual navigation. This drawback hampers automatic 
continuous monitoring in the long term and limits widespread 

Fig. 1. Architecture and components of the mobile sensing system.  
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applications in more buildings. 
Today, with the rapid development of robotic technologies and the 

proliferation of various service robots in the built environment [44], IEQ 
mobile sensing can be achieved in a more efficient and automated way. 
Several studies have begun to explore the potential of using building 
robots for IEQ monitoring [45–50]. For instance, Jin et al. [45], Yang 
et al. [46], Qian et al. [47] and Wu et al. [48] respectively have proposed 
an automated mobile sensing system using a robot equipped with IEQ 
sensors, as well as the corresponding spatio-temporal data processing 
algorithm. These mobile sensing methods were all examined via real- 
world experiments and some were also compared with stationary 
sensing methods. The results showed that robotic mobile sensing can 
enable the accurate and comprehensive understanding of IEQ spatio- 
temporal distribution and prompt positioning of contaminant sources. 
Hu et al. [49,50], who continued to improve the mobile sensing system 
from a single robot to multiple robots, achieved the cooperation of ro-
bots by distributed deep reinforcement learning. This progress means 
that the robotic mobile sensing system can monitor IEQ more efficiently 
in a larger space. 

Although the above researchers have made preliminary explorations 
into the mobile sensing of IEQ, two unresolved problems still exist. 
Firstly, how fast the robot should move is unclear, since the speed re-
quires a trade-off with the sensor response time. If the robot’s moving 
velocity is too high, the measured IEQ data may be inaccurate in some 
places, because the robot may leave before the IEQ sensor readings have 
become stabilized. If the robot moves too slowly to ensure enough IEQ 
sensor response time at each location, the sensing time of global space 
will become too long, which would be detrimental to the spatio- 
temporal processing of IEQ data. The appropriate moving velocity for 
IEQ mobile sensing therefore must be found. Secondly, previous studies 
have mostly incorporated mobile sensing to replace stationary sensing 
without effectively integrating the two methods. The mobile and sta-
tionary sensing methods both have their plusses and minuses. The 

mobile sensing method can obtain IEQ maps with better spatial reso-
lution, but this is just a short-term solution because the robot cannot run 
continuously in the long term. Stationary sensing is the most reliable and 
convenient method for long-term IEQ monitoring, though the spatial 
resolution is usually far from satisfactory. An unresolved challenge is 
how best to combine the mobile and stationary sensing methods so that 
their respective advantages will be complementary, especially in long- 
term monitoring. 

1.3. Objective 

In this paper, air temperature (one of the most significant IEQ pa-
rameters) is selected as the monitoring target. A robot-based mobile 
sensing system for high-resolution temperature monitoring will be 
developed. Three key questions are expected to be answered:  

• What is the effect of robot moving velocity on temperature mobile 
sensing results?  

• What is the short-term solution to obtaining high-resolution thermal 
maps based on the mobile sensing data?  

• How should the mobile and stationary sensing methods work 
together to achieve long-term monitoring of the thermal environ-
ment with suitably high granularity? 

2. Robot-based mobile sensing system 

2.1. Robot platform 

Fig. 1 describes the whole architecture of the mobile temperature 
sensing system. This study employs Autolabor PM1, an open-source 
multi-purpose robotic product, as the robotic platform for mobile 
sensing (http://www.autolabor.com.cn). The speed of the mobile base 
can be continuously adjusted within the range of 0– 1 m/s, which is 

Fig. 2. Snapshots of simultaneous localization and mapping (SLAM) and trajectory tracking technologies: (a) Incrementally built 2-D map from lidar points; (b) Real- 
time navigation based on SLAM; (c) Setup of the Marvelmind indoor navigation system; (d) Pre-record of moving trajectory. 
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sufficient for most indoor mobile sensing tasks. The robot supports 
remote control in real applications. 

The robot operating system (ROS) is a software framework for robot 
program development. The main control unit of the robot is equipped 
with an Ubuntu 18.04 system based on ROS. The system has several 
built-in programs for positioning and navigation; other programs can 
also be written to meet the special needs of mobile sensing. 

2.2. Positioning and navigation system 

The robot is equipped with two Faselase D10 2-D lidars using a 
Simultaneous Localization and Mapping (SLAM) algorithm. SLAM is a 
technique that simultaneously maps the surrounding environment and 
calculates the robot’s position (Fig. 2a) [51]. The robot can achieve 
localization and autonomous navigation based on the constructed map 
(Fig. 2b). 

An ultrasonic indoor navigation system (Marvelmind Beacon HW 
v4.9) was also applied to provide more precise (± 2 cm) location data. 

The navigation system consists of one mobile label on the robot and 
several stationary positioning labels distributed on the boundary of the 
space (Fig. 2c). The mobile beacon’s location is calculated based on a 
propagation delay of ultrasonic pulses between stationary and mobile 
beacons using the trilateration algorithm. 

Based on the above system, the robot can automatically track a pre- 
recorded trajectory (the green polyline in Fig. 2d). Simultaneously, the 
real-time coordinates of the robot are recorded. 

2.3. IEQ sensor 

Air temperature is chosen as the monitoring target because it is a 
common indicator in thermal comfort research and significantly affects 
human health and productivity [5–7]. Indoor air temperature also re-
lates to the cooling or heating load of HVAC systems, as well as control 
performance [12]. The air temperature sensor used in this study is the 
WSZY-1 sensor, with the typical information presented in Table 1. The 
sensor has a wide measuring range and high precision. More impor-
tantly, the sensor has a short recording interval to collect dense readings 
along the moving route. All sensors were calibrated before the 
experiments. 

Table 1 
Typical information of the air temperature sensor.  

Parameter Range Resolution Uncertainty Minimum data 
recording interval 

Temperature − 40–100 ◦C 0.1 ◦C ± 0.3 ◦C 2 s  

Fig. 3. Floorplan of the experimental space, showing the windows, doors, tables, rostrum, air conditioners, stationary sensors and mobile sensing route.  

Fig. 4. Snapshots of the experimental site.  
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3. Experimental setup 

3.1. Overview 

The objective of experiment is to examine how the mobile sensing 
method performs while monitoring dynamic inhomogeneous indoor air 
temperature fields under different conditions. The experiment was 
conducted in a typical classroom on a winter day in December 2021. The 
2-D size of this classroom is 9.6 m (X) * 14.0 m (Y), with a total floor area 
of 134.4 m2. Fig. 3 and Fig. 4 show the spatial layout and snapshots of 
the classrooms. 

The classroom has four windows in front and two doors in the back. 
During the experiments, if we wanted to cool the room, the windows and 
doors could be opened to provide cold air from outside. Air conditioners 
are located on the left and right sides of the classroom as heat sources. 
The maximum heating power is 950 W for each air conditioner. Three 
experimenters were also present at random positions in the classroom to 
simulate disturbances in real scenarios. 

3.2. Stationary sensors and locations 

As shown in Fig. 3, 20 stationary sensors were evenly distributed 
throughout the classroom. The sensors were all placed at the desks at a 
height of 0.75 m. The stationary sensors were the same type of sensor as 
the one on the mobile sensing robot, and they were all calibrated to 
avoid reading differences between different sensors. 

This number of stationary sensor nodes was sufficient in the present 
study to provide a dense sensing network, and the measured data from 
each sensor node could roughly represent the air temperature within a 
square area of 2.5 m * 2.5 m. It should be noted that such a large number 
of sensors would not normally be deployed during actual measurements. 
The purpose of this deployment was to obtain the ground truth of indoor 
air temperature distribution characteristics; the ground truth was 
further used for comparison with the mobile sensing results. 

3.3. Moving route and velocity 

The mobile robot measured air temperature during continuous 
movements without stopping. The dashed line with an arrow in Fig. 3 
illustrates the robot’s pre-planned moving route. The robot started 
moving at the front left of the classroom, then went throughout the 
entire space along the comb-tooth-shaped path before finally returning 
to the starting point after finishing one lap. The whole trajectory of one 
lap was about 85 m. During the experiment, multiple laps were repeated 
in the same manner described above. 

The velocity of the robot is one of the main focuses of this study. In 
order to determine the optimal velocity for mobile sensing, three ve-
locity conditions were designed for comparison (Table 2) to consider the 
sensor response time and the appropriate lap time. Considering the 
uncertainty around the preset velocity because of movement component 
errors and relative navigation algorithms, “velocity ranges” was used 
instead of “values”. For each preset velocity within one velocity range, 
the actual velocity the robot followed was similar in the real environ-
ment, as were the lap time and mobile sensing results. During the high- 
velocity experiment, the robot moved at a speed range of 0.60–0.80 m/s, 
or roughly 2 min per lap. During the medium-velocity experiment, the 
robot moved at a speed range of 0.25–0.45 m/s, or about 5 min per lap. 
In the low-velocity experiment, the robot moved at a speed range of 
0.10–0.20 m/s, or roughly 10 min per lap. 

Fig. 5 illustrates the actual trace as the robot moved throughout the 
space continuously; experiment II is shown as an example. Each dot 
represents the position of the robot when the air temperature sensor 
made records at 2-s intervals. In experiment II (0.25–0.45 m/s), the 
distance between adjacent dots was thus approximately 0.6 m. 

3.4. Experimental procedure and conditions 

The experiment was carried out in three parts, with each part cor-
responding to one mobile sensing velocity level. During each sub- 
experiment, both stationary sensing and mobile sensing were involved 
simultaneously. The mobile robot continued moving for multiple laps to 
collect data. Fig. 6 presents the total number of laps in each sub- 
experiment, as well as the start and end times. 

To make the experimental conclusion as comprehensive as possible, 
complex thermal conditions (which were temporally dynamic and 
spatially inhomogeneous) were created by changing the status of the air 
conditioners and doors in a random way. Fig. 6 lists the detailed con-
ditions during each lap. For example, in experiment I (0.60–0.80 m/s), 

Table 2 
Robot moving velocity for each experiment.  

Experiment no. Robot moving velocity (m/s) Rough lap time (min) 

I 0.60–0.80 2 
II 0.25–0.45 5 
III 0.10–0.20 10  

Fig. 5. Actual trace of the robot at 2-s intervals (experiment II, 0.25– 0.45 m/s): (a) Spatio-temporal view; (b) Plane view.  

Y. Geng et al.                                                                                                                                                                                                                                    
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the two air conditioners were kept running in heating mode and the 
doors were closed for laps 1–5 and 9–14, while the two air conditioners 
were turned off and the doors were open for laps 6–8. 

4. Spatio-temporal processing method 

The spatio-temporal processing of raw data is an important step in 
obtaining high-resolution, real-time temperature maps. Fig. 7 provides a 
vivid illustration of the temperature data structure in both the spatial 
and temporal domains. Compared with deploying multiple stationary 
sensors, measurement from one mobile sensor covers the whole space 
with a higher granularity, although, as shown in Fig. 7b, the data 
structure for mobile sensing is still sparse in the spatio-temporal domain. 
In our experiments, for each timestamp, only one location was moni-
tored and the other 19 were unknown; for each location, the back-to- 
back monitoring interval was rather long, equalling the lap time of the 
robot (2– 10 min). Therefore, scientific spatio-temporal processing 

methods were required to complement data blanks in both the spatial 
and temporal domains to achieve the targeted data structure, as shown 
in Fig. 7c. 

Sections 4.1 and 4.2 further illustrate the detailed spatio-temporal 
processing solutions in the short term (only by mobile sensing) and 
long term (by the cooperation of mobile and stationary sensing), 
respectively. After completing the spatio-temporal data of 20 locations, 
the spatial interpolation method was adopted to generate 2-D heat maps 
for better visualization. Since interpolation is only a means to improve 
the visual effects and is not the focus of this paper, the classic method of 
triangulation with cubic interpolation was adopted. The method is exact 
and involves a small computing load and is often used to conduct quick 
interpolation from sparse data on regularly spaced samples [52]. The 
interpolation function code is available off the shelf in MATLAB. 

Fig. 6. Experimental conditions for air conditioners and door status during each lap.  

Fig. 7. Illustration of data structures in both the spatial and temporal domains for (a) raw data from stationary sensing; (b) raw data from mobile sensing; (c) targeted 
data after processing. 
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4.1. Short-term solution by mobile sensing 

The mobile sensing data alone is sufficient to fill in spatio-temporal 
data blanks in the short term. The robot moves repeatedly in the space 
along the preset trajectory, gathering multiple air temperature samples 
for each location. In our experiments, the interval of adjacent samples 
for each location was 2, 5 and 10 min (i.e. the time the robot took to 
finish a lap). The time-series trend fitting method can be used to infer the 
unknown air temperatures at other time stamps between the two adja-
cent visits of robot to the same location. For better illustration, Fig. 8 
further shows the basic idea of time-series trend fitting, using the loca-
tion S1 in experiment III as an example. During the 90-min experiment, 
S1 was directly measured nine times at 10-min intervals. The nine 
samples were then used to fit the air temperature variation curve of S1 
during the whole period. With the fitting curve, the temperature of S1 at 
any time could be inferred: for example, at 20:50, when the robot was 
away from S1. The above steps were repeated for the data processing of 
the other 19 locations. 

Specifically, for any location i, the non-linear time-series fitting 
curve f̂ (t) can be solved analytically based on the polynomial function, 
given by: 

f̂ (t) = a0 + a1t+ a2t2 +⋯+ antn (1)  

where t is the timestamp and a0,a1,⋯,anare parameters to be determined 
by the ordinary least squares (OLS), given by: 

(a0, a1,⋯, an) = argmin
∑m

j=1

(
ytj − f̂

(
tj
) )2

(2)  

where ytj represents the mobile sensing sample of location i at timestamp 
tj in lap j, and m is the total number of samples of location i. The highest 
order of polynomials, n, is determined by the number of times the 
thermal environment changes at first. For example, in experiment III, 
the status of air conditioners and door was switched four times, which 
indicate n should be fifth. Furthermore, n should be less than the number 
of samples, m, so that function (2) can have a solution. 

There are two main reasons for selecting the polynomial function. 
Firstly, indoor air temperature usually does not fluctuate frequently in 

the short term and the number of increase or decrease is countable. 
Secondly, the sampling interval in our experiments is dense (from 2 min 
to 10 min), which guarantees the air temperature variation between two 
samples is small. Therefore, the polynomial function, although simple, is 
sufficient for the curve fitting. 

4.2. Long-term solution by the cooperation of mobile and stationary 
sensing 

The mobile sensing data itself is insufficient for obtaining real-time 
air temperature maps in the long term because the robot cannot run 
incessantly in practice. Stationary sensing can take over the task once 
mobile sensing is absent. In this way, a long-term solution is divided into 
two situations, depending on whether mobile sensing is present or 
absent. 

Firstly, mobile sensing was used to form a preliminary understanding 
of the whole environment and to accumulate original data in the short 
term. The robot was present during this period and the time-series trend 
fitting method was used for data processing (the same as in Section 4.1). 
Afterwards, the mobile sensing data was further analyzed to select 
several representative locations for the deployment of stationary sensors 
in the next step. Air temperature spatial correlation models from 
representative locations to other locations were also trained in this step. 

Secondly, when the robot was absent, several stationary sensors were 
deployed at the representative locations mentioned above. The collected 
stationary sensing data was then input into the spatial models learned 
from the mobile sensing dataset to infer real-time temperatures at all 
other locations. With the above method, high-granularity air tempera-
ture maps could be obtained even if mobile sensing is absent. 

It should be noted that the above two steps alternated in sequence, 
such as in a relay race. Rather than the cycle occurring only once, it 
repeated multiple times in the long term. The dataset was constantly 
accumulating and updating for the selection of representative locations, 
and for the model training for spatial relationships among all locations. 

In the long-term solution, the key challenges were the determination 
of representative locations and the establishment of the spatial corre-
lation models. For the selection of representative locations, the Pearson 
correlation coefficient was calculated, which is a commonly used metric 
to indicate the similarity between variables or vectors. The coefficient 

Fig. 8. Schematic diagram of the time-series trend fitting method at a certain location (experiment III, 0.10– 0.20 m/s, S1 position).  
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between two certain locations A and B is given by: 

r(A,B) =
n⋅
∑n

i=1
ai⋅bi −

∑n

i=1
ai⋅

∑n

i=1
bi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n⋅
∑n

i=1
a2

i −

(
∑n

i=1
ai

)2
√

⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n⋅
∑n

i=1
b2

i −

(
∑n

i=1
bi

)2
√ (4)  

where a and b are the air temperature data at location A and B, and n is 
the total number of samples at each location. If several locations have 
high Pearson correlation coefficients with each other, they share strong 
similarities in temperature variation. In this way, 20 locations were 
divided into several similar divisions, and representative locations were 
picked from each division. 

For the model development, a variety of data-driven algorithms were 
implemented to capture the underlying quantitative relationship among 
the temperatures at different locations, including linear regression (LR), 
lasso regression, K-nearest neighbour (KNN), support vector regression 
(SVR), decision tree (DT) and random forest (RF). 

LR assumes that the correlation between input and output variables 
is linear. Lasso regression introduces a regularization term in the loss 
function to avoid overfitting in LR. KNN is a machine learning algorithm 
that predicts the unknown according to its neighbours in the feature 
space. The other three algorithms (SVR, DT and RF) are used to capture 
nonlinear relationships among variables, which can exist in a tempera-
ture field because of the delayed response to heat source changes. SVR 
searches for optimal strip-like margins to cover as many samples as 
possible and introduces a kernel function to handle nonlinear relation-
ships. DT divides the feature space by a series of binary nodes, with a 
specific output for each sub-space. RF adopts DT as the basic model, and 
the prediction result is a synthesis of all basic models. 

The model development was implemented in Python using the scikit- 
learn library. The model inputs were temperature at the selected 
representative locations, and the outputs were temperature at the other 

locations. The whole dataset used for model development was divided 
into a training set and a validation set at a ratio of 4:1. Parameter 
optimisation was conducted during each training process. 

5. Results and discussion 

5.1. Effect of robot moving velocity on mobile sensing accuracy 

The moving velocity influences the accuracy of mobile sensing, as 
mentioned in Section 1.2. Due to the response time of the sensor, the 
parameter being measured takes time to stabilize at each location. An 
overly fast velocity thus results in an inevitable deviation from the real 
value. 

To determine the appropriate velocity range for accurate mobile 
sensing, the mobile sensing data under different velocities were 
compared with the stationary sensing (ground truth) results, as shown in 
Fig. 9. The blue scatter plot (where the horizontal axis shows stationary 
sensing data and the vertical axis shows mobile sensing data) illustrates 
the comparative results of all measured locations. S3, S9 and S16 were 
chosen as examples to compare the stationary and mobile sensing data in 
temporal variation curves. R-square and root mean square error (RMSE) 
values between stationary and mobile sensing were also calculated. 

When the robot moved at 0.25–0.45 m/s and 0.10–0.20 m/s, the 
stationary and mobile sensing data were fairly consistent, with R- 
squares of 0.94 and 0.86, respectively, and the scattered points were 
mainly distributed near the diagonal. The RMSE values were also small 
(0.73 and 0.68, respectively). When the robot moved at high velocity, 
however, the mobile sensing data significantly deviated from the ground 
truth, with a lower R-square (0.77) and a higher RMSE (0.93) value. 
Obvious phase delays and extreme values also occurred in the time series 
compared with the ground truth, especially at S9 and S16. 

Based on the above comparisons, the high velocity of 0.60–0.80 m/s 
was too fast to collect accurate temperature data, while 0.25–0.45 m/s 

Fig. 9. Comparisons between stationary sensing (ground truth) and mobile sensing with different moving velocities.  
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and 0.10–0.20 m/s were appropriate for the measurement stage. It 
should be noted that this result is not a universal conclusion. The 
appropriate range of velocity may vary with different heat source 

conditions, moving trajectories and sensor properties. If the mobile 
sensing is introduced into an unfamiliar environment, preliminary 
experiment should be conducted to determine the appropriate moving 

Fig. 9. (continued). 
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Fig. 10. Air temperature maps derived from mobile sensing using the time-series trend fitting method and comparisons with the ground truth (experiment II, 0.25– 
0.45 m/s). 

Fig. 11. Air temperature maps derived from mobile sensing using the time-series trend fitting method and comparisons with the ground truth (experiment III, 0.10– 
0.20 m/s). 
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velocity. 
This section has addressed the issue of mobile sensing velocity from 

the measurement stage. The next section will further explore how the 
medium and low velocities affected the data processing stage and final 
accuracy. 

5.2. Short-term temperature distribution estimated by mobile sensing 

The 20 stationary sensors were used as the ground truth to verify the 
reliability of the data processing method in the short term. Both ex-
periments II (0.25– 0.45 m/s) and III (0.10– 0.20 m/s) were analyzed to 
see how robot velocity affected the performance of the time-series trend 
fitting method, as shown in Fig. 10 and Fig. 11. The spatial distribution 
characteristics of the temperatures obtained in the experiments were 
presented in the form of heat maps, which were smoothed by cubic 
interpolation. Such heat maps can be obtained at any timestamp; four 
typical timestamps in experiments II and III were chosen as examples. 

Other than minor differences in some locations, the spatio-temporal 
characteristics derived from the time-series trend fitting method were 
mostly consistent with the ground truth in experiments II and III. To 
further quantify the accuracy, several indexes of each location and the 
whole space were calculated. Table 3 lists the locations that had sig-
nificant estimated deviations (larger than 1.0 ◦C and 2.0 ◦C, 

respectively) in experiments II and III. Furthermore, the data from all 
locations were taken as a whole; RMSE values and correlation co-
efficients between the estimation and ground truth were calculated in 
order to evaluate the comprehensive accuracy (see Table 4). 

The above results indicate that the time-series trend fitting method 
generally performed better at 0.25–0.45 m/s for obtaining more accu-
rate indoor temperature distribution maps. As the velocity decreased 
from 0.25 to 0.45 m/s to 0.10–0.20 m/s, more locations significantly 
deviated from the ground truth; the overall indoor temperature esti-
mation had a higher RMSE (from 0.64 to 0.69) and weaker consistency 
(from 0.98 to 0.92) with the real distribution. One possible reason is that 
the lower velocity resulted in a longer interval between adjacent sam-
ples at each location, thus missing critical temporal variations within the 
interval. 

In conclusion, the time-series trend fitting method was generally 
sufficient for capturing short-term spatio-temporal characteristics in the 
whole space. Compared with the low-velocity experiment, 0.25–0.45 m/ 
s was more appropriate for estimating temperature variations with the 
method. 

5.3. Long-term temperature distribution estimated by mobile and 
stationary sensing 

In this section, the long-term solution by the cooperation of mobile 
and stationary sensing was examined. Firstly, the mobile sensing data in 
experiment II was used to guide the location selection of stationary 
sensors in the next period and to train the spatial prediction model. 
Fig. 12 shows the correlation coefficient matrix among all locations 
calculated by the mobile sensing data in experiment II. In the matrix, the 
values at the intersection of certain rows and columns represent the 
correlation coefficient between the corresponding two locations. A 
higher correlation coefficient means that the two locations are more 
similar in temperature characteristics. According to the correlation co-
efficient matrix, 20 locations in the whole space could be classified into 
four divisions: division #1 includes S1, S2, S11, S12, S17, S18, S19 and 
S20; division #2 includes S3, S4 and S13; division #3 includes S5, S6, 
S14, S15 and S16; and division #4 includes S7, S8, S9 and S10. Within 
each division, all locations were highly correlated with correlation co-
efficients >0.8, thereby reducing multiple locations to one representa-
tive location. As a result, S3, S9, S15 and S20 were chosen as typical 
stationary sensing locations in the next period. 

The temperatures at these four locations were used as inputs to train 

Table 3 
List of locations with an absolute difference between estimated temperature and 
ground truth larger than 1.0 ◦C and 2.0 ◦C, respectively (experiments II and III).  

Experiment no. Location list (deviation >1.0 ◦C) Location list (deviation 
>2.0 ◦C) 

II (0.25–0.45 m/ 
s) 

S5, S6, S15, S16, S19, S20 (6 
locations) 

None 

III (0.10–0.20 
m/s) 

S2, S5, S6, S11, S13, S14, S17, S18, 
S19 (9 locations) 

S5 (1 location)  

Table 4 
RMSE and correlation coefficients between the mobile sensing estimation and 
ground truth in the whole space (experiments II and III).  

Experiment no. RMSE Correlation coefficient 

II (0.25–0.45 m/s) 0.64 0.98 
III (0.10–0.20 m/s) 0.69 0.92  

Fig. 12. Pearson correlation coefficient matrix of temperatures at different locations.  
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the model to predict temperatures at other locations, which could be 
used to further generate the whole temperature distribution map. Ac-
cording to the description found in Section 4.2, six models (LR, lasso, 
KNN, SVR, DT and RF) were used, and their prediction performances 

were compared in the next period. 
Subsequently, it was assumed that experiment III was a period 

without mobile sensing (despite the fact that the mobile sensing 
experiment was present) and that only data from the stationary sensors 
at S3, S9, S15 and S20 was available. Under such conditions, the pre-
viously trained spatial prediction model and the current stationary 
sensing data at limited locations were used to generate a whole tem-
perature distribution map in real time. Fig. 13 shows an exemplificative 
result at a certain moment and compares the predicted temperature 
maps through different data-mining models. As the figure shows, the 
temperature distribution characteristics predicted by the decision tree 
and random forest methods were relatively consistent with the ground 
truth, while other data-mining models failed to accurately identify the 
occurrence of the left heat source. 

For further comparison, Table 5 lists the RMSE values for tempera-
ture prediction in the entire space as well as the correlation coefficients 
between the prediction and ground truth during the whole period of 

Fig. 13. Prediction results of temperature distribution maps at one representative moment (both air conditioner on, door closed) using different models and sta-
tionary sensing data of S3, S9, S15 and S20. The ground truth was generated from all 20 stationary sensors. 

Table 5 
Comparison results of RMSE for temperature prediction in the entire space and 
the corresponding Pearson correlation coefficients between the prediction and 
ground truth during the whole period of experiment III.  

Algorithm RMSE Correlation coefficient 

LR 1.14 0.85 
Lasso 1.16 0.80 
KNN 1.28 0.84 
SVR 0.97 0.87 
DT 0.75 0.98 
RF 0.68 0.98  
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experiment III (test set). Since the typical values of air temperature were 
around 20 ◦C, the reduction of RMSE from 1.28 (KNN) to 0.68 (RF) was 
significant from a practical point of view. RF performed best at depicting 
the temperature distribution among the six algorithms selected. RF also 
had the highest correlation coefficient of 0.98, which outperformed 
other algorithms such as lasso regression (0.80). This finding indicated 
that RF’s temperature prediction at unknown points followed a more 
similar trend to the ground truth. 

5.4. Potential applications 

Mobile sensing serves as a low-cost, high-resolution environmental 
monitoring solution in large spaces. For large-scale spaces such as 
airport terminals and shopping malls, one robot can replace tens or even 
hundreds of fixed sensors to achieve the same spatial high resolution, 
resulting in a major reduction in investment and maintenance expenses. 
Environmental controls can also be improved with high-resolution data. 

Because fixed sensors are always constrained by installation loca-
tions such as walls and columns, stationary sensing usually fails to 
monitor environment parameters in the middle of large spaces (e.g. 
between the seats of an airport terminal waiting area) without available 
installation locations. In contrast, robots, as mobile installation plat-
forms for sensors, can move freely through the centre of the space. Many 
hidden environmental problems can be detected with this strong spatial 
accessibility. 

Mobile sensing systems are capable of actively tracking environ-
mental problems. Environmental anomalies in large spaces (e.g. cold 
wind infiltration from windows, or air pollutants exhaled by a smoker) 
can be sparsely distributed and can fluctuate dramatically. Mobile 
sensing can quickly trace source cues based on airflow or concentration 
information [53], even if the source keeps moving. 

5.5. Limitations 

The proposed mobile sensing system still has several limitations 
before it can be used for real-world environmental monitoring. 

Firstly, the time-series fitting method could be further optimised. 
Although the polynomial function is generally adequate for most short- 
term scenarios, large fitting deviations may occur in some extreme 
conditions with rapid and drastic temperature fluctuations. Under such 
circumstances, more intensive sampling is required. Furthermore, the 
whole time-series data may need to be split into several parts to conduct 
the regression separately. 

Secondly, the mobile sensing performances of other IEQ parameters 
(such as CO2, PM2.5, illuminance, etc.) have not been tested. The pro-
posed mobile sensing process should be adjusted for other IEQ param-
eters because of the differences in mechanisms and measurement 
methods. For example, the dispersion mechanism of air pollutants is 
more complex than air temperature. Problems may also occur if multiple 
IEQ parameters are measured simultaneously. Because optimal trajec-
tories and velocities may vary with different IEQ parameters, the basic 
settings of the mobile sensing system require careful trade-offs. 

Thirdly, human disturbances were not considered in the experiment. 
Moving occupants can cause occasional disturbances if they pass 
through the preset trajectory and interrupt the mission. The adopted 
robot platform is equipped with an obstacle avoidance algorithm to 
bypass the obstacle and return to the trajectory automatically. In an 
overcrowded space, however, the robot frequently performs obstacle 
avoidance and path planning, both of which significantly delay the 
mobile sensing mission. Investigations into people densities and activity 
patterns will be necessary before the mobile sensing system may be 
deployed in real-life scenarios. 

Fourthly, the impact of battery endurance on mobile sensing should 
be addressed. In our experiment, the battery capacity was sufficient to 
power the robot to run dozens of laps in the classroom. However, as 
space becomes larger, the energy consumption of robot may increase 

dramatically, which limits the popularization and application of mobile 
sensing. 

6. Conclusions 

This paper describes a robot-based mobile sensing system for high- 
resolution temperature monitoring. The integrated system mainly con-
sists of a mobile robot base, a positioning system and an air temperature 
sensor. A series of experiments in a classroom setting were conducted to 
test the air temperature measurements from the mobile sensing system 
by making comparisons with the dense stationary sensor network. Ac-
cording to the experimental results, 0.25– 0.45 m/s (medium velocity) 
was the optimal speed of the robot for high-resolution indoor temper-
ature monitoring, compared to 0.60– 0.80 m/s (high velocity) and 0.10– 
0.20 m/s (low velocity). 

Spatio-temporal processing methods were developed to reconstruct 
continuous thermal maps from the data collected in the experiments, 
which was sparse in both the spatial and temporal domains. For short- 
term monitoring, mobile sensing was sufficient to capture the spatio- 
temporal characteristics in the whole space, based on the time-series 
trend fitting method. For long-term monitoring, a small number of sta-
tionary sensors and a spatial prediction model were introduced to 
cooperate with the mobile sensing, which is capable of continuously 
generating high-granularity thermal maps even if mobile sensing is ab-
sent. Among the many data-mining algorithms used in this paper, 
random forest was found to perform best for the establishment of the 
spatial prediction model. In conclusion, the mobile sensing system can 
assess and diagnose indoor temperatures with high spatial granularity 
and accuracy, as long as the robot velocity and data processing method 
are well planned for addressing specific problems. 

Future work will be conducted to include more IEQ parameters and 
to extend the potential applications of the mobile sensing system. A 
clearer and more comprehensive understanding of the indoor environ-
ment can be formed by using the high-resolution spatio-temporal dis-
tributions of various parameters. The mobile sensing system is also 
expected to interact with the automatic building control system. Using 
this approach, building researchers can further reduce sensing costs, 
improve building operation efficiency and achieve intelligent decision- 
making. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This study is supported by the National Natural Science Foundation 
of China (Grant No. 52130803, 51825802, 51521005). The first author 
acknowledges the China Postdoctoral Science Foundation (Grant No. 
2021M691789). 

References 

[1] Y. Geng, W. Ji, Z. Wang, B. Lin, Y. Zhu, A review of operating performance in green 
buildings: energy use, indoor environmental quality and occupant satisfaction, 
Energy Build. 183 (2019) 500–514, https://doi.org/10.1016/j. 
enbuild.2018.11.017. 

[2] P. Li, Y. Lu, D. Yan, J. Xiao, H. Wu, Scientometric mapping of smart building 
research: towards a framework of human-cyber-physical system (HCPS), Autom. 
Constr. 129 (2021), 103776, https://doi.org/10.1016/j.autcon.2021.103776. 

[3] J. Al Dakheel, C. Del Pero, N. Aste, F. Leonforte, Smart buildings features and key 
performance indicators: a review, Sustain. Cities Soc. 61 (2020), 102328, https:// 
doi.org/10.1016/j.scs.2020.102328. 

[4] M. Jia, A. Komeily, Y. Wang, R.S. Srinivasan, Adopting internet of things for the 
development of smart buildings: a review of enabling technologies and 
applications, Autom. Constr. 101 (2019) 111–126, https://doi.org/10.1016/j. 
autcon.2019.01.023. 

Y. Geng et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.enbuild.2018.11.017
https://doi.org/10.1016/j.enbuild.2018.11.017
https://doi.org/10.1016/j.autcon.2021.103776
https://doi.org/10.1016/j.scs.2020.102328
https://doi.org/10.1016/j.scs.2020.102328
https://doi.org/10.1016/j.autcon.2019.01.023
https://doi.org/10.1016/j.autcon.2019.01.023


Automation in Construction 142 (2022) 104477

14

[5] O. Jay, A. Capon, P. Berry, C. Broderick, R. de Dear, G. Havenith, Y. Honda, R. 
S. Kovats, W. Ma, A. Malik, N.B. Morris, L. Nybo, S.I. Seneviratne, J. Vanos, K. 
L. Ebi, Reducing the health effects of hot weather and heat extremes: from personal 
cooling strategies to green cities, Lancet 398 (2021) 709–724, https://doi.org/ 
10.1016/S0140-6736(21)01209-5. 

[6] Y. Al Horr, M. Arif, M. Katafygiotou, A. Mazroei, A. Kaushik, E. Elsarrag, Impact of 
indoor environmental quality on occupant well-being and comfort: a review of the 
literature, international journal of sustainable, Built Environ. 5 (2016) 1–11, 
https://doi.org/10.1016/j.ijsbe.2016.03.006. 

[7] Y. Geng, W. Ji, B. Lin, Y. Zhu, The impact of thermal environment on occupant IEQ 
perception and productivity, Build. Environ. 121 (2017) 158–167, https://doi.org/ 
10.1016/j.buildenv.2017.05.022. 

[8] Y. Liu, Z. Wang, Z. Zhang, J. Hong, B. Lin, Investigation on the indoor environment 
quality of health care facilities in China, Build. Environ. 141 (2018) 273–287, 
https://doi.org/10.1016/j.buildenv.2018.05.054. 

[9] Z. Pei, B. Lin, Y. Liu, Y. Zhu, Comparative study on the indoor environment quality 
of green office buildings in China with a long-term field measurement and 
investigation, Build. Environ. 84 (2015) 80–88, https://doi.org/10.1016/j. 
buildenv.2014.10.015. 

[10] D. Zhuang, X. Zhang, Y. Lu, C. Wang, X. Jin, X. Zhou, X. Shi, A performance data 
integrated BIM framework for building life-cycle energy efficiency and 
environmental optimization design, Autom. Constr. 127 (2021), 103712, https:// 
doi.org/10.1016/j.autcon.2021.103712. 

[11] H. Kim, T. Hong, J. Kim, Automatic ventilation control algorithm considering the 
indoor environmental quality factors and occupant ventilation behavior using a 
logistic regression model, Build. Environ. 153 (2019) 46–59, https://doi.org/ 
10.1016/j.buildenv.2019.02.032. 

[12] P. Zhou, G. Huang, Z. Li, Demand-based temperature control of large-scale rooms 
aided by wireless sensor network: energy saving potential analysis, Energy Build. 
68 (2014) 532–540, https://doi.org/10.1016/j.enbuild.2013.10.005. 

[13] Building Research Establishment Ltd, Why choose BREEAM?. [WWW Document], 
URL, https://www.breeam.com/discover/why-choose-breeam/, 2021. accessed 
2.11.21. 

[14] United States Green Building Council, LEED, v4.1 certification. [WWW Document], 
URL, https://www.usgbc.org/leed/v41, 2021. accessed 2.11.21. 

[15] International WELL Building Institute, WELL, v2 certification. [WWW Document], 
URL, https://www.wellcertified.com/certification/v2/, 2021. accessed 2.11.21. 

[16] ASHRAE/CIBSE/USGBC, Performance Measurement Protocols for Commercial 
Buildings, ASHRAE Transactions, American Society of Heating, Refrigerating and 
Air-Conditioning Engineers, January 1, 2010. ISBN-13: 978-1933742793, ISBN-10: 
1933742798, 298 pages. 

[17] B. Pollard, F. Held, L. Engelen, L. Powell, R. de Dear, Data fusion in buildings: 
synthesis of high-resolution IEQ and occupant tracking data, Sci. Total Environ. 
776 (2021), 146047, https://doi.org/10.1016/j.scitotenv.2021.146047. 

[18] W. Zhang, K. Hiyama, S. Kato, Y. Ishida, Building energy simulation considering 
spatial temperature distribution for nonuniform indoor environment, Build. 
Environ. 63 (2013) 89–96, https://doi.org/10.1016/j.buildenv.2013.02.007. 

[19] T. Ramos, S. Dedesko, J.A. Siegel, J.A. Gilbert, B. Stephens, Spatial and temporal 
variations in indoor environmental conditions, human occupancy, and operational 
characteristics in a new hospital building, PLoS One 10 (2015), e0118207, https:// 
doi.org/10.1371/journal.pone.0118207. 

[20] J.Y. Lee, P. Wargocki, Y.H. Chan, L. Chen, K.W. Tham, Indoor environmental 
quality, occupant satisfaction, and acute building-related health symptoms in 
Green Mark-certified compared with non-certified office buildings, Indoor Air 29 
(2019) 112–129, https://doi.org/10.1111/ina.12515. 

[21] T. Parkinson, A. Parkinson, R. de Dear, Continuous IEQ monitoring system: context 
and development, Build. Environ. 149 (2019) 15–25, https://doi.org/10.1016/j. 
buildenv.2018.12.010. 

[22] S. Abraham, X. Li, Design of a low-cost wireless indoor air quality sensor network 
system, Int. J. Wireless Inf. Networks 23 (2016) 57–65, https://doi.org/10.1007/ 
s10776-016-0299-y. 

[23] A.S. Ali, Z. Zanzinger, D. Debose, B. Stephens, Open-Source Building Science 
Sensors (OSBSS): a low-cost Arduino-based platform for long-term indoor 
environmental data collection, Build. Environ. 100 (2016) 114–126, https://doi. 
org/10.1016/j.buildenv.2016.02.010. 

[24] Y. Geng, Z. Zhang, J. Yu, H. Chen, H. Zhou, B. Lin, W. Zhuang, An intelligent IEQ 
monitoring and feedback system: development and applications, Engineering 
(2021), https://doi.org/10.1016/j.eng.2021.09.017. 

[25] Y. Geng, B. Lin, J. Yu, H. Zhou, W. Ji, H. Chen, Z. Zhang, Y. Zhu, Indoor 
environmental quality of green office buildings in China: large-scale and long-term 
measurement, Build. Environ. 150 (2019) 266–280, https://doi.org/10.1016/j. 
buildenv.2019.01.014. 

[26] M. Jin, N. Bekiaris-Liberis, K. Weekly, C.J. Spanos, A.M. Bayen, Occupancy 
detection via environmental sensing, IEEE Trans. Autom. Sci. Eng. 15 (2018) 
443–455, https://doi.org/10.1109/TASE.2016.2619720. 
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