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A B S T R A C T

Indoor environmental quality (IEQ) is a critical aspect of the built environment to ensure occupant health,
comfort, well-being and productivity. Existing IEQ monitoring approaches rely on sensor networks deployed at
selected locations to collect environmental measurements, and are limited in scale and adaptability due to
infrastructure cost and maintenance requirement. To enable high-granularity IEQ monitoring with agile adap-
tion to the dynamic indoor environment, we propose an “automated mobile sensing” system that dispatches a
sensor-rich navigation-capable robot to actively survey the indoor space. Data collected in this fashion is sparse
in the joint temporal and spatial domain, and cannot be used directly for IEQ evaluation. To deal with this
special characteristics, we developed a spatio-temporal interpolation algorithm to capture the global trend and
local variation in order to use the data efficiently to reconstruct the IEQ dynamics. We compared the perfor-
mance of the automated mobile sensing with a dense sensor network in a laboratory where we measured the air-
change effectiveness (ASHRAE standard 129) for four different conditions. Results indicate that automated
mobile sensing is able to accurately estimate the parameters with a minimal sensor cost and calibration effort.
Potential applications of this system include indoor thermal comfort, lighting, indoor air quality and acoustic
monitoring, pollutant source identification, and building commissioning. We shared publicly the source codes
for robot control, sensor setup, and interpolation algorithm to encourage comparison study and further devel-
opment.

1. Introduction

Smart buildings are cyber-physical energy systems (CPES) that in-
tegrate sensing, data analytics, and control to provide essential services
to the occupants. Buildings consume about 40% of primary energy in
the U.S. and there is a fundamental drive for buildings to be energy
efficient [1,2]. As people spend about 90% of their time indoors, they
should also be human-centric by focusing on improving human health,
comfort, well-being and productivity, and well-being [3–6]. This could
be achieved effectively by monitoring and enhancing indoor environ-
mental quality (IEQ), such as indoor air quality, thermal comfort,
lighting and acoustics [7–9]. IEQ monitoring has been recognized as
one of the fundamental strategies to obtain credits by various guidelines
and rating systems, such as American Society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE)/Chartered Institution of
Building Services Engineers (CIBSE)/U.S. Green Building Council
(USGBC) Performance Measurement Protocols for commercial buildings
(PMP) [10] and Leadership in Energy and Environmental Design
(LEED) [11]. For instance, environmental parameters (e.g.,

temperature, humidity) need to be continuously monitored when oc-
cupants take a “right-now” thermal comfort survey, according to
AHSRAE/CIBSE/USGBC PMP [10]. LEED suggests CO2 monitoring in
all densely occupied spaces. In addition, IEQ assessment involves con-
taminants sampling in all occupied spaces, such as volatile organic
compound (VOC) and particulate matter (PM) [11]. Guidelines, stan-
dards and rating systems recognize that more IEQ monitoring would be
valuable but affordability constrain limits what is suggested to be used.

Due to complex indoor structures and dynamic environment, IEQ
parameter distributions are often inhomogeneous, resulting in spatial
variations in thermal environment and indoor contaminant exposure
[12–14]. Furthermore, applications of personalized heating/cooling
devices, aiming to reduce building energy use, augment such in-
homogeneity [15–20]. Consequently, spatio-temporal monitoring of
indoor environment can provide an comprehensive IEQ assessment.

Key challenges in the objective IEQ assessment of commercial
buildings involve accurate, easy-to-use, and scalable sensing systems
[21]. An effective approach is to implement wireless sensor networks;
however, despite the continuous reduction in sensor cost and
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simplification in deployment, infrastructure investment and main-
tenance might still remain a concern in the near future, especially when
considering monitoring numerous IEQ variables simultaneously.
Moreover, many sensors that require a significant amount of power
(e.g., hot wire anemometer) can not easily become wireless. Ad-
ditionally, buildings might undergo several renovations in their life-
cycle, so agility is essential to adapt to the changing environment.

1.1. Main contributions and objectives

Differentiated from existing approaches of deploying static sensors
for indoor monitoring, we propose a sensing paradigm of “automated
mobile sensing” by leveraging a navigation-enabled sensing-capable
mobile robot (see Fig. 1 for the overall architecture). This represents a
paradigm of “active inference”, where the robot can plan its path to
take representative measurement samples at locations of interests, as
compared to “passive inference” where the data collection is limited by
the geolocations of static sensors.

From a data analytic perspective, unlike data from static sensors, the
samples taken by the robot is highly sparse in time and space, as illu-
strated in Fig. 3. While existing interpolation mainly focuses on the
spatial domain [22,23], we propose a data-efficient spatio-temporal
(ST) interpolation method that extracts local and global trends and
constructs an informative visualization of IEQ. Through experimental
evaluations of zone air distribution effectiveness (air-change effective-
ness, ACE), automated mobile sensing is compared with static sensing
with a dense sensor network required by the ASHRAE standard 129
[24]. Note that the air-change effectiveness experiment is only used to
demonstrate our novel platform, rather than to investigate possible
factors that influence its value, for which we refer the readers to more
established works [20,25–27]. It is, therefore, the objective of this
paper to describe the novel “automated mobile sensing” system for
indoor environmental quality monitoring, enabled by a sensor-rich
navigation-capable robot to actively survey the indoor space.

2. Brief literature review

2.1. Indoor environmental quality assessment

IEQ assessment can be conducted using occupant surveys [5,28–30],
personal monitoring [31–33], and sensor measurements [34–36]. Sur-
veys provide subjective IEQ evaluation from occupant perspectives;
however, survey design requires systematic effort to avoid bias and
confusion, and the results can not be updated frequently due to user
fatigue. Several online or mobile tools have been developed to allow
users to vote their thermal or lighting preferences in real time [17,28];
however, the responses may reveal only subjective perceptions, like
“the air is stale”, but it rarely gives hints about the causes, such as
increased indoor pollution caused by low outdoor air flow rate or un-
pleasant thermal environment due to malfunctioning mechanical sys-
tems.

Objective measurements, taken by static or mobile sensors during
daily operation or performance commissioning, can accurately depict

building environment and diagnose potential faults. Static sensors are
deployed in a space to continuously monitor environmental parameters
[1]; nevertheless, limited by cost, the deployment is often sparse in
locations or absent, especially for expensive sensors like CO2. In addi-
tion, while indoor environment is often inhomogeneous and un-
predictable, the stationary sensors may not always be deployed in the
optimal locations to reflect indoor environment. Personal monitoring
systems, such as using infrared thermography [31] and physiological
measurements [32,33,37] can offer assessment of individual comfort
and inform building operation system of proper adjustments in real-
time; however, they require users to be equipped with special instru-
ments or sensors and may involve privacy concerns. For some IEQ
parameters like indoor air quality, the effect on productivity and health
may be long-term and cannot be readily captured by physiological
measurements.

Mobile carts, such as an instrumented chair-like cart [34] and the
IEQ cart [35,36] can hold multiple sensors to take measurements si-
multaneously at a given location. While the results are comprehensive,
the carts often require considerable labor cost and manual navigation.
Several studies exist to deploy robots for monitoring and identifying
pollutants both indoor and outdoor [38–41]; however, the methods do
not distinguish the global trend of physical parameters from their local
variations, which might lower the estimation accuracy, and the results
have not been validated against a ground truth, which requires a dense
sensor network for comparison.

2.2. Continuous interpolation from discrete measurements

Data from static or mobile sensor measurements is highly sparse and
requires interpolation for informative visualization. Spatial interpola-
tion is a well-studied topic in geostatistical analysis and image pro-
cessing communities, where methods like Kriging and Markov random
field (MRF) are among the most prominent [22,23]. Kriging has also
been combined with Gaussian MRF [42], Bayesian network [43], and
principle component analysis [44] to improve the computational effi-
ciency. In practice, this means that the algorithm can analyze a large
amount of data within limited time span, thus enabling large-scale
sensing.

Since Kriging is efficient with sparse data, it has been generalized to
spatio-temporal interpolation [22,45]. Shape functions have also been
introduced based on finite element mesh generation [46]. Variational
Gaussian-process factor analysis is proposed to model the dynamics of
spatio-temporal data [47]. Prior works assume multiple time series data
from individual sensor stations, which requires continuity in time at a
specific location; but the data from mobile sensing robot poses the
challenge of high sparsity and non-continuity in time and space (Fig. 3).

Differentiated from existing interpolation methods, our method can
efficiently capture spatial and temporal dynamics by constructing
global and local trend estimators based on highly sparse data.

Fig. 1. Automated mobile sensing system overview. The robotic
platform can either work alone or with static sensor network to
actively estimate building context and facilitate building control.
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3. Methodology

3.1. Integrated system architecture

This section introduces the environmental sensing platform and the
robotic base (Fig. 2) as the essential components in the autonomous
sensing system.

Based on an Arduino microcontroller board, the environmental
sensing platform (ESP) is designed on a software-level to detect and
report sensor faults automatically to alert users, and to work instantly
once powered on, relieving laborious configuration or setup (Fig. 2).

A comprehensive list of sensors are integrated in the ESP to monitor
indoor environmental parameters, including temperature and humidity,
light level, PM2.5, CO2, and organic volatile compound (VOC)
(Table 1). Data are sampled and uploaded to a server using a WiFi
communication link at an interval of 10 s, which are also pushed to a
front-end visualization portal (hosted at dweet.io) for real-time mon-
itoring. In addition, all sensors are calibrated using automatic baseline

correction (ABC) beforehand. In particular, we calibrated the CO2

sensors (K-30) using an off-the-shelf HOBO MX1102 CO2 logger.
Programmed under the robot operating system (ROS), a collection

of software frameworks for robot software development, it runs map-
ping, positioning, and navigation algorithms autonomously. Mounted
with ESP, the mobile robot (Turtlebot 2) can be controlled remotely or
make decisions based on real-time sensing data (Fig. 2).

3.1.1. Indoor positioning
In a new and dynamic environment, the robot can operate without a

detailed floormap. Based on the depth image from Kinect camera, the
Simultaneous Localization and Mapping (SLAM) problem is solved with
particle filter by tracking the robot position relative to the surroundings
[48] (Fig. 2e).

With the additional user-provided layout, a higher-precision loca-
tion estimation is enabled by an augmented reality tag system (Fig. 2d).
Upon the initial positioning by SLAM, the estimate is updated by
reading the distance and direction to nearby reference points marked by

Fig. 2. (a) Snapshot of the environmental sensing platform. (b) Schematic of sensor integration and data communication. Snapshots of (c) the robotic platform, (d) Augmented reality tag
indoor positioning, and (e) camera-enabled simultaneous localization and mapping (SLAM).
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augmented reality tags, which are fiducial markers deployed in advance
at locations indicated on the room layout. During the positioning pro-
cess, the relative distances and angles are processed by the triangula-
tion algorithms to revise the location estimate [49]. This also enables
more robust estimation against dynamic changes in the room as long as
the augmented reality tags remain visible to the robot [49].

3.1.2. Navigation and collision avoidance
Given a set of goal points, the robot is navigated using a global

planner to set the shortest path based on the current knowledge about
the space. However, when some moving objects, like occupants, ob-
struct the planned path, a local planner is employed to avoid obstacles.
Supported by ROS, robot specs like velocity, angular speed, and goal
tolerance can be set to accommodate specific requirements.

3.2. Spatio-temporal interpolation algorithm

Compared to data collected by static sensor stations, measurements
from mobile sensors cover the whole space with higher granularity;
however, for each location, the samples are conducted sequentially in
multiple locations (see Fig. 3 for an illustration). The problem is stated
as below:

Given the mobile sensing data D = …s st v t v{( , , ), , ( , , )}n n n1 1 1 , where
=s x y( , )i i i and ti are the spatial coordinate and timestamp, and vi is the

actual value, our goal is to find a function, � � �× ↦f̂ : 2 , which es-
timate values at unexplored locations at certain time.

A data-driven approach to spatio-temporal (ST) interpolation is
adopted based on statistical decision theory. The variation of an indoor
environment exhibits both a global trend, as dominated by outdoor
weather, building envelope and Heating, Ventilation and Air
Conditioning (HVAC) operation, as well as a local trend, as influenced
by occupants, inhomogeneous air turbulence, pollutant source, and
furniture.

The proposed algorithm, therefore, has three key steps (Fig. 4):

1. ST binning: consider a 3D-space (xy and t axes represent space and
time, respectively) divided into 3D cubes based on spatial and
temporal resolutions. Data points are binned and aggregated to re-
duce measurement errors.

2. Global trend extraction: a regression trend is fitted by, e.g., locally
weighted scatterplot smoothing (LOWESS) [50], to capture the
global variation.

3. Local variation estimation: based on the residues from global trend,
a local variation function is approximated and applied on unknown

points.

The high-granularity map that depicts the indoor environment
evolution is embedded in the ST interpolation function, given by:

= +s sf t f t f tˆ ( , ) ˆ ( ) ˆ ( , ),global local (1)

where f tˆ ( )global and sf tˆ ( , )local are the global and local trends, obtained
as follows.

The global trend depicts the average evolution of the phenomenon
independent of individual locations, since data pooling provides sufficient
samples for estimation. Based on the locally weighted scatterplot
smoothing (LOWESS) method [50], the global trend, f tˆ ( )global , at time

∈ − +t t h t t h t[ ( ), ( )]c c c c , is given by:
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data point weights.
While the global trend function is applicable to all locations, the

local function f̂local captures the spatial variation, which is encoded in
the residuals = −r v f tˆ ( )i i iglobal . Based on the empirical risk minimization
(ERM):

Table 1
Sensing modules of ESP.

Environmental parameter Module Performance Price

Temperature MCP9808 Accuracy: 0.25 °C typical precision over −40 °C to 125 °C range $4.68
Illuminance SI1145 Resolution: 100 mlx $9.95
CO2 K-30 Measurement range: 0–10000 ppm Accuracy:± 3% of measurement Response time: 20 s diffusion time $85
PM2.5 SEN0177 Measuring pm range: 0–500 μg/m3 $46.90
Organic volatile compound TGS2620 Typical detection range: 50–5000 ppm Sensitivity: 0.3–0.5 in ethano $8.90

a b c

y

x

Fig. 3. Illustration of data characteristics in the spatial and temporal
domains for (a) static stations, (b,c) automated mobile sensing,
where (c) depicts a situation of active exploration around the spot of
critical event (star).

Sensor &
location data

Step 2:

Global trend
Step 3:

Local trend
Step 1:

ST binning

High-granularity
interpolation

+

Fig. 4. Illustration of the ST interpolation algorithm, including ST binning for data
smoothing, global trend extraction, and local variation estimation. The outcome is an
interpolation function f̂ that encodes a high-granularity interpolation map.
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where � delineates the range of estimators, e.g., the class of linear
regressors, and � � �× →l: is the loss function, which penalizes error
in estimation, e.g., the squared loss = −l a b a b( , ) ( )2. Implicitly, we
assume that points close in space and time are also close in values,
which is generally true for indoor environment.

A variety of algorithms to capture local variation have been im-
plemented in our open toolset, such as K-nearest neighbor (KNN),
Lasso, support vector regression (SVR), adaptive boosting (AdaBoost),
random forest, and extra trees [50], which are trained by ERM with
different loss functions. The implementation code in Python is available
(see the link in section 5.3).

4. Experiments

4.1. Environmental chamber

The experiment took place in a climate chamber in the Center for
the Built Environment (CBE), which can precisely control supply air-
flow rate, indoor temperature (± 0.5 °C) and humidity (± 3%). The
ventilation system employs underfloor air distribution (UFAD), where
air is supplied from one or two linear grille diffusers on the floor (shown
in Fig. 5). By providing cool air at a low momentum from the floor level
and utilizing buoyancy generated from indoor heat sources (e.g., oc-
cupants) to displace room air, UFAD often achieves a thermally strati-
fied air distribution. During the experiment, all supply air came from
outside, and there was not circulated air. We assumed that outdoor air
CO2 concentration was 400 ppm. The supply air flowrate during the
experiments was maintained at 79 ± 11 m3/hr.

As for heat sources, two sedentary thermal manikins, each with total
sensible heat loss of 68.7 W (±5%) were placed, representing female
subjects for office work (Fig. 5). In addition, we placed one heater panel
(size: ×0.5 0.2 m; power: 200 W) under each table to investigate how
personal heating device affected the zone air distribution effectiveness
and examined the robustness of the algorithms in the given experi-
mental setup.

Ten (10) ESPs were deployed in the occupied zone, which measured
CO2 concentrations at 10 locations and provided the standard assess-
ment of air-change effectiveness according to the ASHRAE standard
129. The sensors were placed at a height of 1.5 m, where detailed lo-
cations are shown in Fig. 5.

4.2. Description of air-change effectiveness

According to the ASHRAE standard 129 [24] the air-change effec-
tiveness (ACE) is “a measure of the effectiveness of outdoor air distribution

to the breathing level within the ventilated space”. It is also known as “zone
air distribution effectiveness” [51]. ACE is calculated from the age of air.
The age of air is the “average time elapsed since molecules of air in a given
volume of air entered the building from outside”, in other words, the age of
air at a specific location in a building refers to the time for a bulk of
outdoor air to reach the position after entering the building. A
“younger” age of air represents that the air is fresher, which is often
located around supply diffusers. An indoor space with a smaller age of
air on average often has a higher ventilation efficiency and air quality.

According to ASHRAE standard 129, the age of air can be estimated
using a tracer gas step-up or decay procedure (described in Section 4.3),
which often uses non-toxic, non-flammable, and environmentally
friendly gases like CO2 as the tracer gas [24]. The ISO 16000 standard
also describes the use of a single tracer gas to determine the local mean
age of air by using concentration decay or homogeneous constant
emission [52]. According to the decay procedure, the air age sA ( ) at
location s is given by:

= −s
s

s
A t t

C
C t

( ) ( )
( )

( , )
,stop start

avg

start (5)

where tstart is the time at the beginning of the decay, tstop is the time
when the procedure ends, sC t( , ) is the tracer gas concentration at lo-
cation s at time t, and sC ( )avg is the time-averaged concentration be-
tween tstart and tstop. Since the samples are usually discrete in time, the
time-averaged concentration sC ( )avg can be estimated by

∑ += sC t i( , Δ )n i
n

start t
1

1 , where Δt is the sampling interval, and n is the
number of samples between tstart and tstop.

Based on the air age measurement, the ACE sE ( ) is given by Ref.
[24]:

=s s
s

E A
A

( ) ( )
( )

,ex

(6)

where sA ( )ex indicates the age of air at the exhaust vent. By definition,
this metric describes an air distribution system's capacity to deliver
ventilated air to an indoor space. The local ACE represents the effec-
tiveness of outdoor air delivery to one specific point in a space.

The ACE is typically 1.0 for a well mixing ventilation system in
cooling and equal or higher than 1.2 for displacement ventilation [51].
In general, a space with a higher ACE is associated with a better air
distribution system.

4.3. Experimental procedure

The experimental procedure was designed according to the standard
tracer-gas decay process by ASHRAE standard 129, as follows:

1. First, beverage-grade CO2 was injected into the chamber with a
ceiling fan and a standing fan well mixing the injected CO2

Fig. 5. Left: testbed floorplan, showing the air inlet diffusers, heaters, tables, CO2 sensor and source locations, and thermal manikins. The sensors are placed at a uniform height of 1.5 m.
Right: testbed snapshot, showing the static sensor stations (1–4), thermal manikins to model realistic heat sources (5,6), robot (7), floor heaters (8,9), and CO2 source (10).
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throughout the chamber. It was assumed that CO2 was well mixed in
the chamber short after the injection period [53].

2. When indoor CO2 concentration was elevated to approximately
3000 ppm, we turned off the CO2 injection and ceiling fans. The
injection period took roughly 5 min.

3. After the ceiling fans were off, the indoor airflow pattern was re-
established after 5 min [54].

4. The automobile platform measured CO2 concentration from the start

location and moved to the next one. Fig. 6 illustrates the moving
route of the platform that stayed at each location for 45 s for CO2

sampling. The platform moved at a speed of 2 m/s to the next lo-
cation until the completion of CO2 recording at all locations. The
moving speed was optimized so that airflow pattern was disturbed
at a minimum level and CO2 decay at 10 locations can be captured
in roughly 8 min.

We compared ACE at various air distribution conditions measured
by the mobile sensing with that obtained according to ASHRAE stan-
dard 129 to validate the performance of the automobile platform.
Table 2 describes the investigated scenarios by altering the intensities
of supply air momentum and heat sources, which influences zone air
distribution effectiveness as represented by ACE. It is worth noting that
the main goal for varying indoor configurations was to validate the
reliability of the platform rather than thoroughly examining how ACE
could be influenced accordingly. In addition, we repeated one scenario
twice (Exp B &C) to assess the repeatability of the indoor air evaluation
and the robustness of mobile sensing. Supply airflow rate remained
constant for all the scenarios.

5. Results and discussion

We conducted the experiments listed in Table 2 with the robot,
where the stationary sensors were used as the standard results for
comparison. For each experiment, the robot collected a dataset, D ,
which was used to train both the global and local trend estimators in
(1).

5.1. Age of air

Firstly, we demonstrate that the mobile sensing captures the actual
dynamics of CO2 concentration in the space. Since the measurements
from the mobile robot change in both space and time, we visualize CO2

concentrations of mobile sensors and compare them with the stationary
data, shown in Fig. 7. While the mobile data reveals the overall decay
trend, it also effectively differentiate the spatial distribution of CO2 at
different locations, which is helpful to build the local trend estimator

Fig. 6. (a) Spatio-temporal trace of mobile measurements. (b) Plane view of the visiting
trace of the robot.

Table 2
Experimental conditions for vents and heater status.

Experiment i.d. Exp A Exp B, C Exp D Exp E

Supply diffusers Diffuser 1 Diffuser 1 & 2 Diffuser 1 Diffuser 1 & 2
Floor heater status Off Off On On

Fig. 7. Left: collocation of the sensor measurements from the static
station S5 (lines) and the mobile robot (crosses). Right: comparison
of station and robot measurements at the same location and time.
This indicates that the robot measurements are representative of the
spatial temporal concentrations.

Fig. 8. Plot of air age estimation by static stations and mobile robot with different local
variation methods in Exp B.
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(Section 3.2). Indeed, by comparing the robot measurements with the
station data collected at the same time and location, we can see that
they are almost identical (right plot of Fig. 7).

To evaluate the accuracy of different interpolation algorithms out-
lined in Section 3.2, we compare the age of air (see Equ. 5) estimated by
the robot to the estimation by static sensors, as is shown in Fig. 8. The
baseline method, denoted as “Mean”, conducts the global trend estima-
tion (Equ. (2)) but disregards the local variation (Equ. (4)), thus creating a
uniform estimation across the space. On the contrary, methods based on
KNN, random forests, and extra trees distinguish the spatial distribu-
tions and produce estimation very close to the static measurements
(Fig. 7). Furthermore, for the same ventilation setups, the robot esti-
mation exhibits little variation in the repeated experiments (Exp B and
C), comparable to the station performance (Fig. 9), implying that the
influence of robot movement on CO2 distribution is negligible.

5.2. Air-change effectiveness

As for the ACE evaluation, results indicate that the proposed

Fig. 9. Comparison of air age estimation given by the stations (blue)
and robot (red) at 7 distinct locations in the repeated experiments
(Exp B and C). The box indicates the min/max range of estimation
across two experiments. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version
of this article.)

Table 3
Comparison results of RMSE for ACE estimation and the corresponding Pearson correlation coefficients (reported in brackets) between the static stations and robot estimation. Mean:
baseline estimation. Other algorithms represent different local variation estimators.

Mean OLS Ridge AdaBoost SVR KNN RandForest ExtraTrees

Exp A 0.077 [0.00] 0.074 [0.73] 0.074 [0.73] 0.058 [0.81] 0.071 [0.82] 0.076 [0.63] 0.072 [0.74] 0.070 [0.76]
Exp B 0.061 [0.00] 0.027 [0.96] 0.027 [0.96] 0.038 [0.77] 0.039 [0.97] 0.031 [0.99] 0.033 [0.91] 0.030 [0.98]
Exp C 0.089 [0.00] 0.078 [0.79] 0.078 [0.79] 0.072 [0.82] 0.066 [0.88] 0.074 [0.82] 0.068 [0.85] 0.071 [0.88]
Exp D 0.043 [0.00] 0.036 [0.62] 0.036 [0.62] 0.031 [0.76] 0.041 [0.84] 0.029 [0.81] 0.031 [0.84] 0.029 [0.81]
Exp E 0.044 [0.00] 0.044 [0.80] 0.044 [0.80] 0.050 [0.79] 0.039 [0.77] 0.045 [0.82] 0.044 [0.73] 0.047 [0.73]
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Fig. 10. Average estimation error of ACE for different methods, where Mean is the
baseline method. The RMSE of Mean reflects the standard deviation of ACE across the
space. The reduced RMSE enables accurate differentiation of ACE at different locations.

Fig. 11. Visualization of spatial distribution of ACE parameters estimated by the static sensors (top plots) and the robotic platform (bottom plots). The five experimental conditions are
listed in Table 2.

M. Jin et al. Building and Environment 127 (2018) 268–276

274



interpolation methods significantly outperform the baseline model
(Table 3 lists the mean squared error for all the experiments, and
Fig. 10 illustrates the average performance). Since the typical values of
ACE are around 1, the reduction of RMSE from 0.063 (Mean) to 0.049
(ExtraTrees) in Fig. 10 is significant from a practical point of view,
which also enables more accurate depiction of the spatial differences of
ACE. The Pearson correlation coefficients are close to one for the list of
algorithms, indicating that the ACE estimation from interpolated ro-
botic measurements follow the same trend as the station estimation.
However, some algorithms like Ridge had relatively low correlation
coefficient of 0.62 for Exp D, which was outperformed by Random
Forest with coefficient of 0.84. This indicates that Random Forest had a
better generalization capability than Ridge for interpolation at un-
known points. In addition, it can be observed that the correlation
coefficients of Random Forest are relatively low for Exp A and E as
compared to the others, since the spatial variation of ACE in these two
experiments was not substantial as indicated by the static sensor mea-
surements in Fig. 11. Note that the correlation for Mean method is 0
because the prediction from Mean is a constant, which fails to capture
the spatial variation of ACE across the chamber.

The ACE measurements shows the ventilation effectiveness of the
different system configurations. In Fig. 11, ACE results for the static and
the robot case are shown. For the robot data the interpolation is done
using KNN to produce a high-granularity ACE mapping. The visuali-
zation indicates that ACE improves with reducing mixing effects with
more supply vents (Exp B, C, E) and adding heating sources (Exp D and
E)for the given indoor configuration in this study. The results are ex-
pected. The air distribution system with two supply diffusers reduces
supply air momentum and mixing effects, resulting in a higher thermal
stratification in the room. In addition, the heaters under the tables also
increase thermal stratification, while minimizing the potential disrup-
tion in terms of thermal plumes to room airflow. The increased thermal
stratification helps generate displacement ventilation in the room and
improve ACE.

5.3. Potential applications

The proposed method is able to capture indoor environmental
parameters both spatially and temporally. The approach can sig-
nificantly reduce the sensing infrastructure cost.1 It could be applied to
assess indoor environmental quality and for continuous commissioning.
In the future deployment, the robot can rover around a space to con-
tinuously monitor indoor IEQ, and can meanwhile interact with users
and facilitate automatic building control, which allows for active in-
ference and decision making in real-time building operation. Since the
robot can move at a speed of about 2 m/s, one single robot is needed to
cover a typical office building floor, though it cannot yet climb the
stairs or navigate between floors.

It has capacities to navigate across large indoor spaces to search
locations where local environment is unacceptable. Pollutant sources
(e.g., particles from occupants or penetrated through open windows)
may be hard to capture using a limited number of stationary sensors.
This platform can access an indoor space extensively and it could be
modified to identify pollutant sources through active sampling (see
Fig. 3c).

Building system commissioning could also employ the platform to
diagnose the efficacy of HVAC and lighting systems. For instance, non-
uniformity of air temperature in the underfloor air distribution (UFAD)
plenum indicates an ineffective system design or implementation. The
platform can map the temperature distribution inside the plenum which
is often not easily accessible for traditional temperature monitoring
(e.g., thermistor probe deployment). Moreover, low ventilation

effectiveness in terms of supply air short-circuit is not uncommon for
HVAC operated at heating mode [55]. The proposed system could as-
sess indoor ACE without deploying dozens of trace gas sensors [24].
Nevertheless, the platform may not be suitable in residential houses
where compact furniture and stairs may limit the moving range of the
platform. The source codes for robot control, sensor setup, and ST al-
gorithm are made available at http://www.jinming.tech/software/ to
encourage comparison study and further development in this area.

6. Conclusion

This study proposed the “automated mobile sensing” paradigm for
high-granularity, agile and scalable indoor environmental quality
monitoring. The integrated sensing system consists of a mobile base and
an environmental sensing platform which is capable of measuring a
range of environmental parameters. To derive actionable insights from
the collected data that are sparse in both spatial and temporal domains,
we developed a spatio-temporal interpolation algorithm that leverages
a hierarchical approach to reconstruct continuous mapping of the in-
door environment. We demonstrated the mobile platform in a labora-
tory experiment of measuring air-change effectiveness. By comparing
the measurements from the mobile platform and those from a standard
dense sensor network, we showed that the automated mobile sensing
approach was able to determine the air-change effectiveness with high
spatial granularity and accuracy.

Acknowledgements

This research is funded by the Republic of Singapore's National
Research Foundation through a grant to the Berkeley Education
Alliance for Research in Singapore (BEARS) for the Singapore-Berkeley
Building Efficiency and Sustainability in the Tropics (SinBerBEST)
Program. BEARS has been established by the University of California,
Berkeley as a center for intellectual excellence in research and educa-
tion in Singapore. We would like to express our gratitude to Fred
Bauman for his suggestions during the lab experiments.

References

[1] K. Weekly, M. Jin, H. Zou, C. Hsu, A. Bayen, C. Spanos, Building-in-briefcase (bib),
arXiv preprint arXiv:1409.1660.

[2] M. Jin, N. Bekiaris-Liberis, K. Weekly, C.J. Spanos, A.M. Bayen, Occupancy detec-
tion via environmental sensing, IEEE Trans. Automation Sci. Eng. 99 (2017) 1–13.

[3] M. Jin, H. Zou, K. Weekly, R. Jia, A.M. Bayen, C.J. Spanos, Environmental sensing
by wearable device for indoor activity and location estimation, 40th Annual
Conference of the IEEE Industrial Electronics Society, 2014, pp. 5369–5375.

[4] Indoor climate and productivity in offices, REHVA guidebooks 6, in: P. Wargocki,
O.A. Seppnen (Eds.), REHVA, Federation of European Heating and Air-conditioning
Associations, Brussels, Belgium, vol. 6, 2006.

[5] M. Frontczak, S. Schiavon, J. Goins, E. Arens, H. Zhang, P. Wargocki, Quantitative
relationships between occupant satisfaction and satisfaction aspects of indoor en-
vironmental quality and building design, Indoor air 22 (2) (2012) 119–131.

[6] M. Jin, R. Jia, C. Spanos, Virtual occupancy sensing: using smart meters to indicate
your presence, IEEE Trans. Mob. Comput. 16 (11) (2017) 3264–3277.

[7] J. Sundell, On the history of indoor air quality and health, Indoor air 14 (s7) (2004)
51–58.

[8] K. Parsons, Human Thermal Environments: the Effects of Hot, Moderate, and Cold
Environments on Human Health, Comfort, and Performance, CRC press, 2014.

[9] S. Prasow, Acoustics in green buildings: refining the concept of environmentally
quality while improving occupant health and productivity synergistically, J. Acoust.
Soc. Am. 123 (5) (2008) 3095–3095.

[10] ASHRAE/CIBSE/USGBC, Performance Measurement Protocols for Commercial
Buildings, ASHRAE Transactions, American Society of Heating, Refrigerating and
Air-Conditioning Engineers, January 1, 2010 ISBN-13: 978-1933742793, ISBN-10:
1933742798, 298 pages.

[11] US Green Building Council, Leadership in Energy and Environmental Design LEED,
Building Design and Construction, V4.

[12] W. Zhang, K. Hiyama, S. Kato, Y. Ishida, Building energy simulation considering
spatial temperature distribution for nonuniform indoor environment, Build.
Environ. 63 (2013) 89–96.

[13] A. Bulińska, Z. Popiołek, Z. Buliński, Experimentally validated cfd analysis on
sampling region determination of average indoor carbon dioxide concentration in
occupied space, Build. Environ. 72 (2014) 319–331.

[14] M. Jin, N. Bekiaris-Liberis, K. Weekly, C. Spanos, A.M. Bayen, Sensing by proxy:

1 The robot employed in the study is TurtleBot 2, which costs about 2000 USD: http://
www.turtlebot.com/turtlebot2/ [access date: 10/2017].

M. Jin et al. Building and Environment 127 (2018) 268–276

275

http://www.jinming.tech/software/
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref2
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref2
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref3
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref3
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref3
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref4
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref4
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref4
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref5
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref5
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref5
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref6
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref6
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref7
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref7
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref8
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref8
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref9
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref9
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref9
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref10
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref10
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref10
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref10
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref12
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref12
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref12
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref13
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref13
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref13
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref14
http://www.turtlebot.com/turtlebot2/
http://www.turtlebot.com/turtlebot2/


occupancy detection based on indoor co2 concentration, in: proceedings of the
international conference on mobile ubiquitous computing, Syst. Serv. Technol.
(2015) 1–10.

[15] A.K. Melikov, Personalized ventilation, Indoor Air 14 (s7) (2004) 157–167.
[16] S. Schiavon, B. Yang, Y. Donner, V.-C. Chang, W.W. Nazaroff, Thermal comfort,

perceived air quality, and cognitive performance when personally controlled air
movement is used by tropically acclimatized persons, Indoor air 27 (3) (2017)
690–702.

[17] L.J. Ratliff, M. Jin, I.C. Konstantakopoulos, C. Spanos, S.S. Sastry, Social game for
building energy efficiency: incentive design, IEEE Annual Allerton Conference on
Communication, Control, and Computing, 2014, pp. 1011–1018.

[18] S. Liu, L. Yin, W.K. Ho, K.V. Ling, S. Schiavon, A tracking cooling fan using geofence
and camera-based indoor localization, Build. Environ. 114 (2017) 36–44.

[19] H. Zhang, E. Arens, Y. Zhai, A review of the corrective power of personal comfort
systems in non-neutral ambient environments, Build. Environ. 91 (2015) 15–41.

[20] D. Faulkner, W.J. Fisk, D.P. Sullivan, D.P. Wyon, Ventilation efficiencies of desk-
mounted task/ambient conditioning systems, Indoor Air 9 (4) (1999) 273–281.

[21] D. Heinzerling, S. Schiavon, T. Webster, E. Arens, Indoor environmental quality
assessment models: a literature review and a proposed weighting and classification
scheme, Build. Environ. 70 (2013) 210–222.

[22] N. Cressie, C.K. Wikle, Statistics for Spatio-temporal Data, John Wiley & Sons, 2015.
[23] S. Geman, D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian

restoration of images, IEEE Trans. pattern analysis Mach. Intell. 6 (1984) 721–741.
[24] ASHRAE Standard 129, Measuring Air-change Effectiveness, ASHRAE, Atlanta, GA,

US, 1997, pp. 1–20.
[25] W.J. Fisk, D. Faulkner, D. Sullivan, F. Bauman, Air change effectiveness and pol-

lutant removal efficiency during adverse mixing conditions, Indoor Air 7 (1) (1997)
55–63.

[26] M. Krajčík, A. Simone, B.W. Olesen, Air distribution and ventilation effectiveness in
an occupied room heated by warm air, Energy Build. 55 (2012) 94–101.

[27] S. Schiavon, F.S. Bauman, B. Tully, J. Rimmer, Chilled ceiling and displacement
ventilation system: laboratory study with high cooling load, Sci. Tech. Build
Environ. 21 (7) (2015) 944–956.

[28] L. Zagreus, C. Huizenga, E. Arens, D. Lehrer, Listening to the occupants: a web-
based indoor environmental quality survey, Indoor Air 14 (s8) (2004) 65–74.

[29] E. Gossauer, A. Wagner, Post-occupancy evaluation and thermal comfort: state of
the art and new approaches, Adv. Build. energy Res. 1 (1) (2007) 151–175.

[30] A. Leaman, F. Stevenson, B. Bordass, Building evaluation: practice and principles,
Build. Res. Inf. 38 (5) (2010) 564–577.

[31] A. Ghahramani, G. Castro, B. Becerik-Gerber, X. Yu, Infrared thermography of
human face for monitoring thermoregulation performance and estimating personal
thermal comfort, Build. Environ. 109 (2016) 1–11.

[32] C. Dai, H. Zhang, E. Arens, Z. Lian, Machine learning approaches to predict thermal
demands using skin temperatures: steady-state conditions, Build. Environ. 114
(2017) 1–10.

[33] S. Lee, I. Bilionis, P. Karava, A. Tzempelikos, A bayesian approach for probabilistic
classification and inference of occupant thermal preferences in office buildings,
Build. Environ. 118 (2017) 323–343.

[34] C. Benton, F. Bauman, M. Fountain, A field measurement system for the study of
thermal comfort, ASHRAE Trans. 96 (1990) 623–633.

[35] C.-M. Chiang, P.-C. Chou, C.-M. Lai, Y.-Y. Li, A methodology to assess the indoor
environment in care centers for senior citizens, Build. Environ. 36 (4) (2001)
561–568.

[36] H. Kim, et al., Field-test of the new ashrae/cibse/usgbc performance measurement
protocols for commercial buildings: basic level, ASHRAE Trans. 118 (2012) 135.

[37] S. Takada, S. Matsumoto, T. Matsushita, Prediction of whole-body thermal sensa-
tion in the non-steady state based on skin temperature, Build. Environ. 68 (2013)
123–133.

[38] Y. Chen, H. Cai, Z. Chen, Q. Feng, Using multi-robot active olfaction method to
locate time-varying contaminant source in indoor environment, Build. Environ. 118
(2017) 101–112.

[39] A. Lilienthal, T. Duckett, Building gas concentration gridmaps with a mobile robot,
Robotics Aut. Syst. 48 (1) (2004) 3–16.

[40] M. Reggente, A. Mondini, G. Ferri, B. Mazzolai, A. Manzi, M. Gabelletti, P. Dario,
A.J. Lilienthal, The dustbot system: using mobile robots to monitor pollution in
pedestrian area, 3rd Biannual International Conference on Environmental Odour
Monitoring and Control, vol. 23, 2010, pp. 273–278.

[41] S. Thrun, C. Martin, Y. Liu, D. Hahnel, R. Emery-Montemerlo, D. Chakrabarti,
W. Burgard, A real-time expectation-maximization algorithm for acquiring multi-
planar maps of indoor environments with mobile robots, IEEE Trans. Robotics
Automation 20 (3) (2004) 433–443.

[42] L. Hartman, O. Hössjer, Fast kriging of large data sets with gaussian markov random
fields, Comput. Statistics Data Analysis 52 (5) (2008) 2331–2349.

[43] J. Dearmon, T.E. Smith, Gaussian process regression and bayesian model averaging:
an alternative approach to modeling spatial phenomena, Geogr. Anal. 48 (1) (2016)
82–111.

[44] D. Mendez, M. Labrador, K. Ramachandran, Data interpolation for participatory
sensing systems, Pervasive Mob. Comput. 9 (1) (2013) 132–148.

[45] K.V. Mardia, C. Goodall, E.J. Redfern, F.J. Alonso, The kriged kalman filter, Test 7
(2) (1998) 217–282.

[46] L. Li, P. Revesz, Interpolation methods for spatio-temporal geographic data,
Comput. Environ. Urban Syst. 28 (3) (2004) 201–227.

[47] J. Luttinen, A. Ilin, Variational gaussian-process factor analysis for modeling spatio-
temporal data, Advances in Neural Information Processing Systems, 2009, pp.
1177–1185.

[48] D. Fox, W. Burgard, F. Dellaert, S. Thrun, Monte carlo localization: efficient position
estimation for mobile robots, AAAI 2 (1999) 343–349.

[49] H. Liu, H. Darabi, P. Banerjee, J. Liu, Survey of wireless indoor positioning tech-
niques and systems, IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. 37 (6) (2007)
1067–1080.

[50] J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning vol. 1,
Springer series in statistics Springer, Berlin, 2001.

[51] ANSI/ASHRAE, ANSI/ASHRAE 62.1, Ventilation for Acceptable Indoor Air Quality,
ASHRAE, Atlanta, GA, US, 2013.

[52] Indoor air technical committee, Part 8: Determination of Local Mean Ages of Air in
Buildings for Characterizing Ventilation Conditions, Geneva: International
Organization for Standardization (ISO) 16000.

[53] A. Gadgil, C. Lobscheid, M. Abadie, E. Finlayson, Indoor pollutant mixing time in an
isothermal closed room: an investigation using cfd, Atmos. Environ. 37 (39) (2003)
5577–5586.

[54] L. Peeters, A. Novoselac, Impact of Human Activity on Unsteadiness of Airflow and
Convective Heat Transfer in Indoor Environmental Studies vol. 1, (2011), pp.
495–500.

[55] S. Liu, A. Novoselac, Air diffusion performance index (adpi) of diffusers for heating
mode, Build. Environ. 87 (2015) 215–223.

M. Jin et al. Building and Environment 127 (2018) 268–276

276

http://refhub.elsevier.com/S0360-1323(17)30501-2/sref14
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref14
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref14
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref15
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref16
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref16
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref16
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref16
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref17
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref17
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref17
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref18
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref18
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref19
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref19
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref20
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref20
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref21
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref21
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref21
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref22
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref23
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref23
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref24
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref24
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref25
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref25
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref25
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref26
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref26
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref27
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref27
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref27
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref28
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref28
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref29
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref29
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref30
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref30
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref31
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref31
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref31
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref32
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref32
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref32
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref33
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref33
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref33
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref34
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref34
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref35
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref35
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref35
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref36
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref36
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref37
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref37
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref37
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref38
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref38
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref38
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref39
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref39
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref40
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref40
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref40
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref40
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref41
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref41
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref41
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref41
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref42
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref42
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref43
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref43
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref43
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref44
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref44
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref45
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref45
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref46
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref46
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref47
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref47
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref47
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref48
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref48
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref49
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref49
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref49
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref50
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref50
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref51
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref51
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref53
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref53
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref53
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref54
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref54
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref54
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref55
http://refhub.elsevier.com/S0360-1323(17)30501-2/sref55

	Automated mobile sensing: Towards high-granularity agile indoor environmental quality monitoring
	Introduction
	Main contributions and objectives

	Brief literature review
	Indoor environmental quality assessment
	Continuous interpolation from discrete measurements

	Methodology
	Integrated system architecture
	Indoor positioning
	Navigation and collision avoidance

	Spatio-temporal interpolation algorithm

	Experiments
	Environmental chamber
	Description of air-change effectiveness
	Experimental procedure

	Results and discussion
	Age of air
	Air-change effectiveness
	Potential applications

	Conclusion
	Acknowledgements
	References




